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Chemical freezing of phase separation in immiscible binary mixtures

Daniele Carati and Rene´ Lefever
Facultédes Sciences, CP 231, Universite´ Libre de Bruxelles, 1050 Bruxelles, Belgium

~Received 16 February 1996; revised manuscript received 5 March 1997!

We discuss the thermodynamic and kinetic conditions under which chemical reactions may prevent the
coarsening terminating spinodal decomposition and freeze the unmixing of binary mixtures at some early,
pattern forming, stage of evolution. Under very general conditions, we establish that~i! this pattern freezing
phenomenon can only occur in nonequilibrium systems the level of dissipation of which exceeds a finite,
nonzero threshold value;~ii ! at least two independent chemical processes must take place;~iii ! chemistry must
be destabilizing, which requires that at least one of these processes must be autocatalytic;~iv! pattern formation
is possible even outside of the spinodal region, i.e., without involving a phase separation phenomenon, in
unsymmetrical mixtures where the potential energies between pairs of identical particles are sufficiently dif-
ferent. This latter condition replaces for nonideal chemically reacting binary mixtures theunequal diffusion
coefficients conditionwhich governs the appearance of Turing patterns in the classical reaction-diffusion
theory.@S1063-651X~97!13708-4#

PACS number~s!: 68.45.Da
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I. INTRODUCTION

The phase ordering dynamics of a binary mixture, such
a binary alloy, quenched from a high-temperature, homo
neous state to a point below the spinodal line is well kno
@1#. In this domain, the mixture is unstable with respect
long wavelength, small amplitude concentration fluctuatio
and, at first, decomposes into two coexisting phases exh
ing an interconnected, labyrinthine morphology. Sub
quently, on a long time scale, this pattern slowly coars
and finally transforms into two homogeneous macrosco
phases separated by a minimal interfacial boundary reg
This coarsening, also called Ostwald ripening, is due to
fact that in the spinodal domain, all nonzero Fourier mod
with a wave numberk smaller than some upper cutoff valu
ku are unstable, while the zero modek50 is only marginally
stable. Under those conditions, the dynamics selects a sp
organization which originates from the amplification of lar
wavelength modes, i.e., it corresponds to vanishingly sm
wave numbers (k→0). Indeed, though the growth of thes
large scale modes is extremely slow because it requires
diffusion of matter over large distances, in the end, it go
erns the spatial organization because it minimizes free
ergy.

Over the last twenty years, several theoretical stud
have investigated the idea that coupling spinodal decom
sition with chemical reactions may, in the absence of hyd
dynamic effects, freeze this coarsening process and stab
a stationary inhomogeneous state characterized by an in
sic wavelength; i.e., a wavelength determined by molecu
and kinetic parameters rather than by externally impo
boundary conditions and/or geometrical constraints@2–6,8#.

In general, the starting point of these theoretical studie
a nonlinear diffusion equation, deriving from a squa
gradient free energy functional@9#, in which source terms are
added to model the chemical reactions occurring in the m
ture. So far, the choice of these chemical terms has re
either on intuitive considerations@2,4–6,8#, or on a master
equation derivation which exploits the kinetic similarities
561063-651X/97/56~3!/3127~10!/$10.00
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some chemical reactions with spin-exchange processes@3#.
This basically mean field type of approach was pioneered
Huberman@2#, who predicted that the influence of chemist
on spinodal decomposition may not only narrow the band
unstable modes, but more importantly, introduce a lower c
off kl , below which all modes, and in particular, the mo
k50, are stable. Considering a two step autocatalytic re
tion, this author further showed, within the framework of th
autocatalytic model, that chemistry restricts the size of in
mogeneities which arise during spinodal decomposition
der conditions where the system is out of equilibrium w
respect to both chemical equilibrium and phase composit

The theoretical results reported in more recent works s
port this prediction that chemistry may suppress the coars
ing which normally terminates the isothermal phase sep
tion of immiscible, incompressible fluids. More than th
even in these studies, this suppression is obtained thank
chemical processes which are considerably simpler than
one considered by Huberman, hence, suggesting that
phenomenon in questionis ubiquitous in nature@5#, and that
the class of chemical reactions, which qualify as candida
for a possible experimental demonstration, is extrem
broad. A major simplification in this respect, is the fact th
in none of the models studied recently, is the chemistry
volved autocatalytic: typically, the reactions considered
simple isomerization processes, such asA
B, @3,4,8#,
association-dissociation reactions, such asA1B
C @5#, or
standard adsorption-desorption surface reactions@6#.

This apparently extremely general effect of chemistry
spinodal decomposition is, however, obtained through a p
cedure which we find thermodynamically unsatisfacto
@10#, because it consists in adopting chemical rate la
which, contrary to those adopted for diffusion, do not ta
into account the nonideality of the systems considered. M
precisely, it amounts to assuming that, somehow, far fr
thermodynamic equilibrium, the relationship binding chem
cal affinities to activity coefficients@11,12# may be neglected
and that, as a result, it then becomes possible to mo
3127 © 1997 The American Physical Society
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3128 56DANIELE CARATI AND RENÉ LEFEVER
chemical and diffusional processes as being indepen
from each other@13#.

The conditions for which thisfar from equilibrium inde-
pendency assumption~FFEIA! applies are unclear. Our ob
jective here is, therefore, to investigate the behavior of m
tures undergoing phase separation in the presence
chemical reactions along a different line of approach wh
~i! does not rely on the FFEIA,~ii ! allows us to encompas
equilibrium, as well as far from equilibrium situations, an
~iii ! is based on thermodynamic considerations which
model independent.

We shall study the case of chemically reactive bina
mixtures which is also the case investigated in previo
works. We shall limit ourselves to situations which involv
no hydrodynamic effects. From a chemical point of vie
this means that we restrict ourselves to reaction sche
which a priori rule out the occurrence of pressure or dens
variations of chemical origin. No other assumption will b
made concerning the kinetics of the chemical processes
sidered.

It is characteristic of chemical reactions and diffusion th
the thermodynamic forces governing these processes ar
lated, being function, in the first case, of the chemical pot
tials and, in the second case, of the chemical potentials
tial derivatives. The thermodynamic fluxes conjugate
these forces, i.e., the chemical reaction rates and diffu
rates, are thus also function of the chemical potentials;
relationship is, furthermore, well known if one admits t
validity of the usual phenomenological laws relating therm
dynamic forces and fluxes. Under those conditions, choo
the chemical potentials determines the coupling between
fusional and chemical processes. In particular, it determ
the equilibrium state towards which reaction-diffusion sy
tems evolve in the absence of external constraints. As
bodied in the classical Duhem-Jouget theorem@11#, it results
therefrom that in equilibrium systems, diffusional stabili
automatically insures the stability of chemical equilibrium
In order to determine what happens to this classical stab
relationship under nonequilibrium conditions, questi
which underlies the present study, it is essential in mode
chemical and diffusional fluxes to respect this property t
both kinds of fluxes are given functions of the same chem
potentials, which themselves are thermodynamic quant
subjected to well-defined, general requirements.

We undertake the investigation of the behavior of bina
mixtures undergoing simultaneously spinodal decomposi
and chemical reactions by addressing this problem in de
in Sec. II. Taking as usual in mean field approaches,
square-gradient free energy as starting point, we discuss
form that chemical potentials must have within this fram
work to be thermodynamically consistent. Subsequently,
express in terms of these chemical potentials the genera
reaction-diffusion equation governing the spatiotemporal
havior of the system. We analyze the linear stability prop
ties of the uniform steady state solutions of this equation
Sec. III. We derive from this analysis in Secs. IV A an
IV B, the thermodynamic and kinetic conditions under whi
chemical reactions may introduce a lower cutoffkl which ~i!
excludes the zeroth mode from the band of unstable mo
~ii ! permits to avoid the phenomenon of coarse graining,
~iii ! allows instead for the freezing of spinodal decompo
nt
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tion at an intermediary stage. This analysis allows us to p
dict also that the difference in potential energies betwe
pairs of identical particles plays an essential role in the s
bility properties of the systems considered here. Notably,
value of this parameter determines whether or not there
already exist a finite band of unstable modes outside of
spinodal domain; in other words, whether or not a symme
breaking instability may be observed which leads to patt
formation without involving the unmixing phase transitio
The results are illustrated on an example in Sec. IV C.

II. MODELING OF CHEMICALLY REACTIVE BINARY
MIXTURES

A. Free energy and chemical potentials

We consider a binary mixture subjected to isotherm
isobaric conditions which below~above! some critical tem-
peratureTc , exhibits a miscibility gap. As usual, we suppo
that the coarse grained concentrations of the componen
and 2 forming this mixture, respectively,c1(r ) and c2(r )
~expressed in mass per unit volume!, can be defined at eac
space pointr . In functional form, the Gibbs free energy o
this system can be written as

G5E drg~r !, ~1!

where g(r ) is a free energy density,dr denotes a volume
element, and integration extends over the entire syst
Working in the spirit of the treatments currently adopted
study the problem at hand, we assume that composition
dients are small compared to the reciprocal of intermolecu
distances and we expandg(r ) about its valuegb for a bulk
phase of uniform composition. Assuming further that no e
ternal field or other source of spatial anisotropy is prese
we only retain in this expansion the terms compatible w
the tensoral invariance ofg(r ) with respect to symmetry
operations of rotation@9#. To the leading order, this yields

g~r !5gb~c1 ,c2!1
1

2 (
i , j 51

2

k i j ~c1 ,c2!¹ci•¹cj . ~2!

The scalar termgb takes into account the nonideal, energe
and/or entropic destabilizing effects responsible for the sp
odal decomposition of uniform bulk phases. Thek i j ’s de-
scribe the interactions betweeni -j pairs of particles and are
the elements of a symmetric matrix when the medium
isotropic. Contrary togb, these gradient terms should alwa
be stabilizing: in the spinodal domain, their effect shou
insure the minimization of interfacial boundary regions a
the existence of an upper cutoffku , on the band of unstable
Fourier modes.

As explained in the introduction, it is important in orde
to study the coupling of chemical reactions and spinodal
composition, to take into account that these two proces
are controlled by thermodynamic forces which are linked
the components chemical potentialsm1 andm2. The remain-
ing part of this section serves the purpose of setting up
reaction-diffusion equation obeyed by the system dynam
in agreement with this requirement and in as general fo
form as possible.
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56 3129CHEMICAL FREEZING OF PHASE SEPARATION IN . . .
Let us first explicate that in Eq.~2!, g(r ) is a first order
homogeneous function of the concentrationsci . For any
numbera, one has

gb~ac1 ,ac2!5agb~c1 ,c2!, ~3a!

k i j ~ac1 ,ac2!5a21k i j ~c1 ,c2!. ~3b!

Choosinga to be equal to the densityr5c11c2, we reex-
press the functional dependence ofgb and of thek i j in terms
only of the coarse grained massic fractionx[x1(r )5c1 /r,
so that the free energy density~2! thus rewrites as
@x2(r )512x#

g~r !5rgb~x!1
1

2 (
i , j 51

2
k i j ~x!

r
¹ci•¹cj . ~4!

Assuming that the densityr5c11c2 is constant throughou
the system, immediately transforms this expression into
familiar Cahn-Hilliard form

g~r !5rFgb~x!1
k~x!

2
~¹x!2G , ~5!

where k(x)5k11(x)1k22(x)22k12(x) measures that con
tribution to nonideality which arises from the existence of
unbalance between the mean attractive forces between
molecules and the attractive force between unlike molecu
This parameter must be positive so thatper sethe occurrence
of inhomogeneities results in an increased free energy.
face tension effects then insure that concentration gradi
cannot growad infinitumand that the spinodal instability i
bounded by an upper cutoff; as a consequence, inhomog
ities corresponding to large wave numbers~small wave-
lengths! are always damped.

Given thatr5c11c2 is constant, it could seem, at firs
sight, that introducing this factor in Eq.~4! complicates no-
tations unnecessarily. This is the case when spinodal dec
position takes place in the absence of chemical reaction
write down the diffusion equation describing the system e
lution, it is then sufficient to know the chemical potenti
difference

Dm[m12m25
dG~x,12x!

dx
,

so that the factorr5c11c2 may be forgotten. Here how
ever, we need to keep track of the complete dependenc
G with respect toc1 andc2. Indeed, later on, to incorporat
chemical reactions and write down the reaction-diffus
equation giving the system evolution, we shall need to kn
the chemical potentials of each component separately. In
riving the latter from the classical defining relations

m15
dG~c1 ,c2!

dc1
, ~6!

m25
dG~c1 ,c2!

dc2
, ~7!
e

ike
s.

r-
ts

ne-

m-
to
-

of

w
e-

it is essential to remember thatc1 andc2 must be treated as
independent quantities. Replacing expression~4! for g in Eq.
~1! and using Eqs.~6! and ~7!, we obtain that

m15m1
b~x!2 1

2 @k~x!1D~x!#¹2x

2 1
2 ]x@x k~x!1D~x!#~¹x!2, ~8!

m25m2
b~x!1 1

2 @k~x!2D~x!#¹2x

1 1
2 ]x@~12x! k~x!2D~x!#~¹x!2, ~9!

where m1
b and m2

b are the bulk chemical potentials of th
components, andD(x)[k11(x)2k22(x) measures devia
tions from ideality which arise when the attractive forc
pulling together identical molecules are different; clear
this contribution to nonideality is distinct from the one d
scribed byk(x). Depending upon whetherD(x) is equal to
zero or not, we shall call the mixture symmetrical or unsy
metrical. The deviations ofD(x) from zero may be due to a
difference in the range over which the interactions betwe
pairs of identical particles operate as well as to a differe
in the intensities of the attractive forces. In this sense,
notion of symmetry used here is more general than the
associated with symmetrical mixtures classically@14#. In de-
riving Eqs.~8! and ~9! we have used the classical relation

x
]m1

b~x!

]x
1~12x!

]m2
b~x!

]x
50, ~10!

which the bulk chemical potentialsm1
b(x), andm2

b(x) must
satisfy in view of the extensivity properties ofG. Equation
~10! is of particular interest for the following because it a
lows us to specify the bulk chemical potentialsm1

b andm2
b in

terms of a single unknown functionZ(x). One has

m1
b~x!5m1

01E
1

x

dx8~12x8! Z~x8!, ~11!

m2
b~x!5m2

02E
0

x

dx8x8Z~x8!, ~12!

where the chemical potentialsm1
0 and m2

0 of components 1
and 2 in pure form are functions of temperature and press
only. The integrations extend from the situation in which t
components are pure to the one in which they form a unifo
mixture the composition of which is given b
c15rx,c25r(12x). In terms of the chemical potential
~8!,~9!, the free energy density writes asg(r )5c1m11c2m2.
Integrating the Laplacian terms of this expression over a v
ume of mixture enclosed by a surface on which bound
terms vanish@9#, we recover the Cahn-Hilliard form~5!
wheregb is given by

gb~x!5r@xm1
b~x!1~12x!m2

b~x!#. ~13!

Noteworthy, while the chemical potentials~8!,~9! depend on
the self-interactions differenceD(x), the usual Cahn-Hilliard
free energy~5! does not. As a result, classicallyD(x) plays
no role in the spinodal decomposition problem of purely d
fusive binary mixtures. We shall see below that this situat
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3130 56DANIELE CARATI AND RENÉ LEFEVER
changes in the presence of chemistry. Chemical rates ar
general, more complicated functions of chemical potent
than diffusion and as a rule they depend uponD(x) explic-
itly. The latter quantity becomes then an essential param
for the stability properties of the mixture.

B. Examples: Perfect and regular solutions

With the derivation of expressions~5! and~8! and~9! the
relations existing between the square-gradient free en
density of a binary mixture and the chemical potentials of
components have been stated in general form. This form
ism involves essentially three unknown functions,Z(x),
k(x) andD(x), which have to be determined on the basis
the properties particular to the system considered.

The first two functions govern the behavior of purely d
fusive systems. For the sake of concreteness, before we
sue our general treatment, let us specify these functions
two classical types of mixtures: perfect and regular solutio
Our purpose here is purely illustrative. The results est
lished in the next sections will not be restricted to the cho
of a particular mathematical form forZ(x) andk(x).

For simplicity and without loss of generality, we s
r51 in the following. We first consider the case of tw
components forming a perfect solutions in a uniform bu
phase. This corresponds to the choice

k~x!50,

Z~x!5
RT

x~12x!
.

Replacing these expressions and Eqs.~11!–~13! in Eq. ~5!, it
immediately follows thatg[g(r ) is constant in space an
represents the free energy density of a perfect solution,

g5g01RT@x ln~x!1~12x!ln~12x!#. ~14!

g05m1
0x1m2

0(12x) is the free energy density before mix
ing; the second term is the entropy of mixing which is
ideal form.

As a second example, we consider a symmetrical non
form regular solution with a constant, stabilizing surface te
sion term. This amounts to putting

k~x!5k.0 ~k5const!,

Z~x!5
RT

x~12x!
22V,

and yields

g~r !5g01RT@x ln~x!1~12x!ln~12x!#1Vx~12x!

1
k

2
~¹x!2, ~15!

where V measures the bulk nonideality; whenV.0, this
system exhibits a critical point forx5xc51/2 and
T5Tc5V/2R @11,14#.
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C. Diffusive flux and spinodal instability

The rate of diffusion is proportional to the divergence
the flux Jx of particles 1 with respect to particles 2. Th
thermodynamic forceF, driving this process is the gradien
of the chemical potential difference between molecules 1
2 (F52¹@m12m2#). To relateJx andF, we adopt the usua
phenomenological law

Jx52L~x!¹~m12m2!, ~16!

whereL(x) is a function of composition~Onsager’s coeffi-
cient!, the positivity of which is required in order that en
tropy production be positive. In the absence of chemistry,
diffusion equation forx thus reads

] tx5¹@L~x!¹~m12m2!#. ~17!

The stability of a homogeneous statex5x0 is easily deter-
mined by considering the evolution of a small perturbati
dx(r ,t)5x(r ,t)2x0, that moves the system away from th
state

] tdx~r ,t !5L0¹2@dm1~r ,t !2dm2~r ,t !#. ~18!

Here,L0 stands forL(x0). We also introduce the simplified
notationsk05k(x0), Z05Z(x0) and D05D(x0). The ex-
pressions fordm1 anddm2 are calculated from relations~8!
and ~9! after substituting in them expressions~11! and ~12!
for the bulk chemical potentials. This yields

dm1~r ,t !5F ~12x0!Z02
k01D0

2
¹2Gdx~r ,t !, ~19!

dm2~r ,t !5F2x0Z01
k02D0

2
¹2Gdx~r ,t !. ~20!

Equation~18! may now be written in Fourier space as

] tdx~k,t !5L0k2@m18~x0 ,k!2m28~x0 ,k!#dx~k,t !, ~21!

where,m18 andm28 are obtained from Eqs.~19! and ~20!:

m18~x0 ,k!5~12x0!Z01 1
2 @k01D0#k2, ~22!

m28~x0 ,k!52x0Z02 1
2 @k02D0#k2. ~23!

Replacing Eqs.~22! and ~23! in Eq. ~21!, yields that the
linear growth coefficient of modek is given by

G~k!52L0k2@Z01k0k2#. ~24!

Since k0 must be positive, the sign ofZ05]2g(x)/]x2 at
x5x0 determines the nature of the free energy extremu
the homogeneous states is stable for positiveZ0. If Z0 is
negative, the homogeneous statex0 is unstable with respec
to perturbations the wave numbersk of which lie in the range

0,k,A2Z0 /k0[ku . ~25!

In that case, the system leaves the homogeneous state
tends to develop two domains of different concentrat
separated by an interface. The conditionZ050 thus defines
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56 3131CHEMICAL FREEZING OF PHASE SEPARATION IN . . .
the so-called spinodal domain. The growth factor of the fa
est growing mode during the early evolution of spinodal d
composition, i.e.,

kf5A2Z0/2k0, ~26!

is then given simply by

G~kf !5L0

Z0
2

4k0
. ~27!

D. Coupling of diffusion and chemical reactions

Suppose now that in addition to diffusion, the compo
tion of the binary mixture may also vary due to chemic
reactions and/or relaxation phenomena~excitation processes
conformational changes, photochemical processes, e!.
Suppose further that there areR linearly independent pro
cesses of this sort, and that the mixture is an open syste
contact with external reservoirs of constant composit
which may maintain it out of thermodynamic equilibrium.

The molecular mechanisms underlying these proce
need not be detailed. It suffices for our general purpose
know that they amount to transformations which interconv
the mixture components into each other. Phenomenol
cally, these processes can be represented in chemical
tion form as

a1rX11a2rX21(
i

air Bi
b1rX11b2rX21(
i

bir Bi ,

~28!

where the indexr 51, . . . ,R labels the chemical transforma
tions, theBi ’s represent the composition variables describ
the state of the external reservoirs and the coefficie
ajr ,bjr , ( j 51,2,i ) represent the molecularities of comp
nents 1, 2 andBi , respectively, in the forward and backwa
direction of chemical reactionr .

As the external reservoirs composition and the mixt
density are constant, the mass balance equation giving
spatiotemporal evolution of the system reads

r] tx5(
r 51

R

n1rM1wr1¹•@L~x!¹~m12m2!#, ~29!

wherewr is the rate of reactionr . ~We are primarily inter-
ested in the influence of chemical reactions on unmix
under isobaric conditions; we want to avoid the additio
complications which pressure and density variations, lead
to the need of introducing hydrodynamic equation into
description, would entail.! Since mass is conserved in chem
cal reactions, the stoichiometric coefficients,nkr5bkr2akr ,
and molecular masses,Mk of components 1 and 2 (k51,2)
are linked by the relation

(
k51

2

nkrMk50 ~;r !. ~30!

It is therefore convenient for the following to defin
n r[n1rM152n2rM2, and puttingr51, to rewrite Eq.~29!
more simply as
t-
-

-
l

.
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] tx5(
r 51

R

n rwr1¹•@L~x!¹~m12m2!#. ~31!

Two qualitatively different kinds of transformations are e
compassed by Eq.~28! according to whether or not the res
ervoirs in contact with the mixture are involved. In the latt
case, one hasair 5bir 50 (; i ) so that only the component
1 and 2 of the mixture participate in the reaction. In t
former case, at least some of theair andbir coefficients are
different from zero and the reaction is a reservoir ‘‘driven
reaction or exchange process. In driven reactions some o
Bi ’s may act as catalysts, e.g., whenair 5bir .

To each reaction ratewr is associated a thermodynam
force, or chemical affinityAr . With the notations

mW r5a1rM1m11a2rM2m21mW Br , ~32!

mQ r5b1rM1m11b2rM2m21mQ Br , ~33!

wheremW rB5(air MBi
mBi

andmQ rB5(bri MBi
mBi

, the affinity

Ar can be expressed in terms of chemical potentials as

Ar5mW r2mQ r , ~34!

while the reaction rateswr5vW r(mW r)2vQ r(mQ r) are the differ-
ence of two terms corresponding, respectively, to the dir
rate of reactionvW r , which depends uponmW r , and to the
reverse rate of reactionvQ r which depends uponmQ r .

By definition, thermodynamic equilibrium is the state f
which the affinity and rate of each chemical reaction sim
taneously vanish

Ar50, wr50. ~35!

We conclude therefrom that, whenmQ r5mW r[m̃ r , the equality

vW r(m̃ r)5vQ r(m̃ r) must hold. Since, this equality has to b
obeyed independently from the value ofm̃ r , the functions

vW r(•) and vQ r(•) must be identical so that we may s

vW r(•)5vQ r(•)5v r(•). The most general expression for th
rate of a chemical reaction is thus

wr5v r~mW r !2v r~mQ r !. ~36!

It is well-known that thermodynamics does not determ
chemical reaction rates; it only imposes that at equilibriu
the relations~35! hold. The fact that the functionsvW r andvQ r
have to be equal, is not in contradiction with this stateme
Indeed, the reaction rate itselfwr is not prescribed since i
still contains the unknown functionv r . Our analysis does
not require that a particular form for this functionv r be
postulated. In addition, by the thermodynamic postulate t
the entropy production of linearly independent chemical p
cesses must be positive,wr andAr must always have the
same sign. This implies thatv r must be a monotonically
increasing~nonlinear! function.

When the affinity is small, Eq.~36! reduces to the linea
relation wr5gAr , whereg is a positive constant. For th
general nonlinear regime, it is usual to write the reaction r
as
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wr5v r~mW r !~12exp@2Ar /RT# !, ~37!

which is compatible with~36! if v r(m)}exp(m/RT).
At this stage, it is important to stress that a wide variety

reaction-diffusion systems can be described by Eq.~31!.
Nevertheless, in Sec. III, we shall see that the stability pr
erties of their uniform stationary states can be classified q
simply into four general categories once the chemical po
tials are known and the thermodynamic requirements m
tioned above concerning the rateswr are taken into account

III. LINEAR STABILITY OF HOMOGENEOUS
STATIONARY STATES

A. Linear growth coefficients G̃„k…

Contrary to what happens with purely diffusive syste
~cf. Sec. II C!, in the case of chemically reacting mixture
the homogeneous stationary state concentrationsx0 can no
longer be chosen at will. For a given temperature and p
sure, their value is fixed by the chemical reactions and
state of the external reservoirs with which the system
changes matter and energy, i.e., by the solutionsx0 of the
conservation relation

(
r 51

R

n r@v r„mW r~x0!…2v r„mQ r~x0!…#50. ~38!

Using the same notations as in Sec. II C, the linear stab
of these states with respect to a small perturbationdx(r ,t) is
given by

] tdx~r ,t !5F (
r 51

R

n r„dv r~mW r !2dv r~mW r !…

1L0¹2~dm12dm2!G . ~39!

The quantitiesdv r(mW r) anddv r(mW r) given by

dv r~mW r !5
dv r

dmW r
U

mW r ~x!5mW r ~x0!

dmW r~r ,t !5vW r8dmW r~r ,t !,

~40!

dv r~mQ r !5
dv r

dmQ r
U

mQ r ~x!5mQ r ~x0!

dmQ r~r ,t !5vQ r8dmQ r~r ,t !,

~41!

definevW r8 andvQ r8. Introducing the dimensionless paramete

z05S L0

k0vW 18
D 1/2

Z0 , r r5
vQ r8

vW r8
,

t r5S k0

L0vW 18
D 1/2

vW r8 , d5
D0

k0
, ~42!

and proceeding as in Sec. II C, the linear growth coeffici

G̃(k) corresponding to the rescaled time and space varia
f
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t̃ 5vW 18t, r̃ 5FL0k0

vW 18
G21/4

r , ~43!

can be written in compact form as

G̃~k!52k41@M0~d!2z0#k21N0z0 . ~44!

The explicit expressions forM0(d) andN0 are

M0~d!5C1~x0!d1C2~x0!, ~45!

N05C1~x0!~122x0!1C2~x0!, ~46!

with

C1~x0!5(
r 51

R
n rt r

2
@a1rM11a2rM21~b1rM11b2rM2!r r #,

~47!

C2~x0!5(
r 51

R
n rt r

2
@a1rM12a2rM22~b1rM12b2rM2!r r #.

~48!

The r r8’s andt r8’s are positive functions whatever the valu
of x0P@0,1#. Furthermore, it should be kept in mind that th
value of x0, as given by Eq.~38!, does not depend on th
coefficientsk i j multiplying the gradient terms ofg, and thus
does not depend ond. This is noteworthy becaused largely
controls the system stability. Indeed, one may already

serve that in the expression forG̃(k) @cf. Eq. ~44!#, d only
appears in the term of orderk2; by varyingd, the sign and
magnitude of this term, and hence the stability ofx0, can be
modified at will.

B. Classification of instabilities

For nonreactive systems, it has been shown in Sec.
that the change of sign ofZ0, or equivalently here ofz0,
defines the boundary of the spinodal domain:Z0,0 is the
condition under which Eq.~24! admits a finite band of un-
stable modes which includes the modek50. Here, in order
to classify the wider class of behaviors which become p
sible in the presence of chemistry, we remark the followin

~i! Since the linear stability of the homogeneous statio
ary state solutions of Eq.~38! with respect to the mode
k50 is given by

G̃~0!5N0z0 , ~49!

and hence, only depends on the sign of the functionsN0 and

z0, the stability diagrams reporting the behavior ofG̃(k) can
be divided into the four basic cases described in S
III B 1–4.

~ii ! In the large wave numbers domain (k→`), the eigen-

valuesG̃(k) are always negative: surface tension, which p
vents too sharp interfaces to develop, and diffusion, whic
all the more important that the wavelength of spatial hete
geneities is small, cooperate to damp short wavelength fl



ic

it

e
de

-
e

th

t

ue

a

ion

in-

.
e,
nts
’
ns
of

ich

es-
ing

ly

der

able

ith
ide-

in
s in
the
e-

ive

e

56 3133CHEMICAL FREEZING OF PHASE SEPARATION IN . . .
tuations efficiently. As a consequence, if atk50,

dG̃(0)/dk25M0(d)2z0 is positive,G̃(k) must pass through
a maximum for

k5 k̃ f5S M0~d!2z0

2 D 1/2

. ~50!

~iii ! Replacing this expression ofk̃ f in Eq. ~44!, one finds
that there exists a finite band of unstable modes, from wh
the modek50 is excluded, if the inequalities

G̃~0!5N0 z0,0, ~51!

and

G̃~ k̃ f !5FM0~d!2z0

2 G2

1N0z0.0

5 1
4 C1~x0!2d0

21
C1~x0!

2
@C2~x0!2z0#d0

1 1
4 @C2~x0!2z0#21N0z0.0 ~52!

are fulfilled.
~iv! In strongly unsymmetrical mixtures, i.e., in the lim

udu→`, inequality ~52! is always satisfied. Looking for the

transition point whereG̃( k̃ f) passes from the negative to th
positive values, so that the finite band of unstable mo
appears, we consider Eq.~52! as an equation ind and solve
for its roots. This yields the values

d65
1

C1~x0!
@2C2~x0!1z062A2N0z0#, ~53!

which replaced in Eq.~50! permit to calculate the wave num
ber kc corresponding to this point of marginal stability. On
has

kc5~2z0N0!1/4. ~54!

In brief, the main outcome of the above analysis, is that if
mode k50 is stable@cf. inequality ~51!#, and if the self-
interaction difference parameterd does not belong to the
interval (d2 ,d1),

d{~d2 ,d1!, ~55!

then the uniform stationary statex0 is unstable with respec
to a finite band of wave numbers,

0,k2<k<k1 , ~56!

the boundaries of which can be written in terms of the val
of k̃ f andkc , given by Eqs.~50! and ~54!, as @it is easy to
verify that when Eq.~55! holds, the value ofk̃ f is always
larger than that ofkc]

k65 k̃ f
A16A12~kc / k̃ f !

4. ~57!

Let us now analyze more in detail the four cases which m
be encountered depending on the sign ofz0 andN0.
h

s

e

s

y

1. Turing kind of instability

If z0.0 andN0,0, the uniform stationary statex0 lies
above the spinodal line andG(0),0. The components of the
mixture are thus miscible. Nevertheless, pattern format
could take place if the value ofd fulfills condition ~55!. No
phase separation being involved, the symmetry breaking
stability appearing in that case is reminiscent of theTuring
instability well known in classical reaction-diffusion theory
The originality of the instability mechanism found her
however, is that it does not require the diffusion coefficie
of two reactants, the so-called ‘‘activator’’ and ‘‘inhibitor,’
to be unequal. Instead, it is the difference of self-interactio
between identical particles which controls the formation
patterns with an intrinsic wavelength. If condition~55! is not

satisfied, i.e., ifd(x0)P(d2 ,d1), G̃(k),0 for all values of
k and the stationary statex0 is stable.

2. Spinodal instability

If z0,0 andN0,0, the stationary statex0 lies below the
spinodal line. There exists a band of unstable modes wh
includes the uniform perturbation modek50. We conclude
that spinodal decomposition should proceed in this case
sentially as in the absence of chemistry. The fastest grow
mode is either Eq.~50! or the modek50, depending upon
whetherM0(d)2z0.0 or not. When the system is strong
unsymmetrical, the early growth ofk̃ f is faster than that of
the fastest mode of the purely diffusive case. Indeed, un
the transformation~42! and ~43! expressions~26! and ~27!
become in dimensionless formkf5A2z(x0)/2 and
G(kf)5z(x0)2/4. By comparing with Eqs.~50! and~52!, it is

clear that forud(x0)u→`, the inequalityG̃( k̃ f)2G(kf).0
holds.

3. Chemical instability

If z0.0 andN0.0, the stationary statex0 lies above the
spinodal line. Nevertheless, there exists a band of unst
modes which includes the uniform perturbation modek50.
This instability originates from nonlinearities associated w
the reaction scheme considered rather than from the non
ality of molecular interactions in the mixture. It should
general involve a multistationary state phenomenon and i
this respect distinct from spinodal decomposition or from
Turing kind of instability described in case 1. As in the pr
ceding case, depending upon whetherM0(d)2z0.0 or not,
the fastest growing mode is either Eq.~50! or the mode
k50; again also in strongly asymmetric mixtures,k̃ f grows
more rapidly than the fastest mode of the purely diffus
system.

4. Ostwald ripening freezing instability

If z0,0 andN0.0, the stationary statex0 lies below the

spinodal line, but ifd(x0)P(d2 ,d1), one hasG̃(k),0 for
all values ofk: the chemical reactions completely inhibit th
phase separation. If on the contrary,d(x0){(d2 ,d1), there
exists a finite band of unstable modes,

0,kl [k2,k,k1[ k̃ u , ~58!
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which excludes the modek50. This is the interesting cas
where patterns with an intrinsic wave length may app
while at the same time the mixture is immiscible. As e
plained in the introduction, such a behavior amounts in
terminology introduced by@6,7# to a freezing of the Ostwald
ripening stage of phase separation. We shall, therefore, r
to it as theOstwald ripening freezing instability~ORFI!. The
following properties are noteworthy:~i! It is clear from their
definitions that the purely diffusive upper cutoff,ku5Az0
@cf. Eq. ~25! rewritten using Eq.~43!#, and the lower and
upper boundaries of the unstable modes band, respecti
k2 andk1 @cf. Eqs.~50!, ~54!, and~57!#, depend on different
parameters and hence, can be varied independently
each other. For example, onlyk6 depends ond and on the
concentrationsBi maintained constant in the external res
voirs. It is thus to be expected that by changing these c
centrations, one may vary the position of the unstable b
(kl , k̃ u) with respect to that of the purely diffusive system
In fact, these two bands could even become disconnecte
that ku,kl , k̃ u , if the inequality

2C1~x0!@d1x0#z0.0 ~59!

holds, in which case, chemistry hampers the damping
diffusion of largek modes.

We shall not, in the present work, attempt to determ
and to classify the great variety of patterns which appe
once the homogeneous stationary statex0 becomes unstable
This requires a nonlinear analysis which we plan to rep
elsewhere@16#. The objective of our discussion in Sec. IV
to precise more explicitly the thermodynamic and kine
properties which condition the appearance of patterns an
the ORFI just defined. The results of this discussion are
lustrated by simulating numerically the behavior of an e
ample in Sec. IV C.

IV. THERMODYNAMIC AND KINETIC CONDITIONS ON
THE CHEMICAL FREEZING OF PHASE SEPARATION

A. Dissipation threshold

Let us first consider what kind of instability may occur
the homogeneous state is an equilibrium state (x05xe). At
equilibrium, all the affinities vanish@mW (xe)5mQ (xe)# and
consequentlyvW r85vQ r8[v r8 , or equivalently,r r(xe)51. In
that case, the parametersM0 ,N0 reduce to

Me5Ne52(
r 51

R

n r
2t r , ~60!

so that the eigenvalue equation simply reads

G̃e~k!52@k22Ne#@k21ze#. ~61!

We have mentioned in Sec. II D that thev r are monotoni-
cally growing functions; their derivatives are thus alwa
positive and so are thet r . Equation ~60! shows that the
parametersMe and Ne are always negative at equilibrium
independently of the functionst r in the reaction ratesand
independently of the functionske and ze appearing in the
free energy. As Eq. ~61! shows and in agreement wit
r
-
e

fer

ly,

m

-
n-
d

so

y

e
rs

rt

of
l-
-

Duhem-Jouget theorem, the stability properties of homo
neous equilibrium state are thus entirely determined by
sign of ze which controls diffusional stability.

The spinodal instability can then be observed at equi
rium in the domain corresponding to the spinodal region
nonreactive systems@z(xe),0#. On the contrary, the ORF
can never be observed under equilibrium conditions si
Ne is always negative in that case.

Furthermore, sinceN(xe) is strictly negative at equilib-
rium, the ORFI can only appear if the external baths dr
and maintain the system at a finite distance from its chem
equilibrium state. To see this, let us suppose thatx0 belongs
to the thermodynamic branch of steady states@15# and lies
close to the equilibrium state:x05xe1dx0, with
udx0u/xe!1. The first terms in the expansion ofN0 are

N05Ne1
dN

dx0
dx01•••, ~62!

and the minimal distance from equilibrium at which the co
dition N0.0 may be realized, is

dx0.U Ne

dN

dx0

U . ~63!

The amplitude of the distance from equilibriumdx0 has thus
a lower bound below which the ORFI cannot be observed
is equivalent to conclude that the ORFI is a dissipative
stability, or that the patterns aredissipative structures@15#.

B. Properties of reaction schemes

In order that the ORFI be possible, the chemical sche
must include at least two reactions (R>2). Indeed, if
R51, the stationary condition for homogeneous states
equivalent to the equilibrium condition and we have sho
in the preceding section that the ORFI cannot be observe
equilibrium. Furthermore, the scheme must include at le
one autocatalytic reaction, i.e., a reaction in which the s
ichiometric coefficients of at least one component of t
mixture (X1 or X2) are nonzero for both the direct and th
reverse transformations (ar1Þ0, br1Þ0 or ar2Þ0, br2
Þ0). Indeed, if all the reactions in the scheme are nonau
catalytic, they can be rewritten as

n rX1(
i

ari Bi
n rY1(
i

bri Bi , ~64!

wheren r stands now forar1 and br2. In that case, the pa
rameterN(x0) reduces to

N~x0!52
1

2(
r 51

R

n r
2t r~x0!@12x01r~x0!~11x0!#,

~65!

which is negative and the ORFI is impossible. Hence, it
interesting to note that simple reaction schemes cannot
rise to the ORFI. In particular, binary systems undergo
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simple reactions likeB11X
Y1B2 will not induce pattern
formation, even under far from thermodynamic equilibriu
conditions.

C. Example

To illustrate by an example the ORFI described in S
III, we consider the following two step autocatalytic reacti
scheme:

B112X11X2
3X11B2 , ~66a!

B11X11X2
2X21B2 . ~66b!

B1 andB2 are initial and final products the concentrations
which are kept constant by external reservoirs. The mixt
free energy is defined by choosing forz(x) the regular solu-
tion form

z~x!5
RT

x~12x!
22V. ~67!

In the reservoir, for simplicity, we suppose that the mixtu
of B1 ,B2 is ideal and define accordingly their chemical p
tentials as

mB1
5C1RT ln~xB1

!, ~68!

mB2
5C1RT ln~12xB1

!. ~69!

Adopting for the reaction rates the exponential form~37!, the
kinetic equation forx reads

] tx5t1FexpS mB1
12m11m2

RT
D 2expS 3m11mB2

RT
D G

2t2FexpS mB1
1m11m2

RT
D 2expS 2m21mB2

RT
D G

1L¹2~m12m2!, ~70!

where

m15m1
01RT ln~x!1V~12x!22

k1D

2
¹2x2

k

2
~¹x!2,

~71!

m25m2
01RT ln~12x!1Vx21

k2D

2
¹2x2

k

2
~¹x!2.

~72!

We have seen that the affinityAT /RT52 ln(xB1
/xB2

) of the
overall reaction

2B1
2B2 ~73!

cannot be taken equal to zero, which implies thatxB1
cannot

be equal to 1/2. Here, we setxB1
50.87 and, for simpli-

city, we take the parameters depending on the interm
cular interactions as being constant:k(x)[k51.0,
D(x)[D520.3, andV52.2. Letting further the chemica
relaxation timest1 ,t2 as well as the Onsager coefficientL
.

f
e

e-

and RT be equal to one, and choosing for to the referen
chemical potentials the valuesm1

050.122,m2
050.183,C

520.288 one finds that Eq.~70! admits three homogeneou
stationary solutionsx0, namely:x0

a51/2,x0
b50.024 279 and

x05x0
c50.269 59. The stationary statex5x0

b is stable for all
k’s, while x5x0

c is unstable for a range ofk values which
includes the modek50. The stationary statex5x0

a , which
lies in the spinodal region, on the contrary, is unstable w
respect to the finite band of wave numb
k2'0.3453,k,k1'0.5295 from which the modek50 is
excluded. Taking this state as average initial condition a
integrating Eq.~70! numerically, one finds~see Fig. 1! that
instead the Ostwald ripening process which would be
served in the absence of chemistry, a stable pattern w
hexagonal symmetry finally establishes itself in the course
time.

A complete discussion of the various nonlinear behavi
which may arise in models such as~66a! and ~66b! will be
presented elsewhere.

V. CONCLUSION

To investigate the idea that chemical reactions may fre
the unmixing of immiscible mixtures at an early stage
spinodal decomposition, we have developed an appro
which is based on general thermodynamic arguments,
compasses equilibrium as well as nonequilibrium situatio
and does not rely on the FFEIA.

Within the framework of this approach, we have esta
lished that the linear stability properties of chemically rea
ing binary mixtures can be classified into four categori
one of which~case 4, Sec. III! corresponds to the soft mod

FIG. 1. Snapshots of the density profile, for example,~70! for
~a! t50, ~b! t5200,~c! t5450, and~d! t530 000. The domain size
is 90390 and the simulation is made with 1283128 points. The
values of the parameters are given in the text.
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stabilization effect leading to phase separation freezing.
encounter this case, it is indispensable that the system
sidered be dissipative, that it undergoes a chemical pro
comprising at least two independent reaction steps and th
least one of these steps be autocatalytic. It is a remark
fact that those properties are exactly those of the model s
ied by Huberman in his twenty year old pioneering paper@2#.

From a kinetic point of view, our results do not suppo
the recent claims that the chemical freezing of phase sep
tion is an ubiquitous phenomenon@5# susceptible to be ob
served with very simple chemistry. The monomolecular s
tems, involving a single reaction step of the formA
B,
which have been introduced recently to study the ORFI m
be considered as ‘‘toy’’ models. They have, however,
advantage of simplicity and of furnishing an appropriate
scription of a certain experimentally realizable situation@7#.
As such, they could be viewed as a convenient ansatz
approximating the more complex chemical interactions a
reaction schemes which need to be considered in reality.
also worth mentioning that the recent molecular dynam
studies which have been devoted to the ORFI@17#, and
which constitute another approach for this problem do
show any chemical freezing of the spinodal decomposit
. S
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st
e
-

or
d
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c
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with the reactionA
B. This result, which suggests that hy
drodynamics may affect the coupling between reactions
phase separation, is a point which deserves further inves
tion.

Finally, our results draw attention to the enlarged varie
of symmetry breaking instabilities which may be encou
tered in nonideal systems, even in domains of param
space where the occurrence of phase transitions can be
cluded. This feature which we have reported earlier in
case of anisotropic ternary mixtures@18# is further illustrated
by the chemically reacting binary systems considered h
notably by their behavior in response to variations of t
self-interaction parameterd.
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