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Chemical freezing of phase separation in immiscible binary mixtures
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We discuss the thermodynamic and kinetic conditions under which chemical reactions may prevent the
coarsening terminating spinodal decomposition and freeze the unmixing of binary mixtures at some early,
pattern forming, stage of evolution. Under very general conditions, we establisfi)thizsis pattern freezing
phenomenon can only occur in nonequilibrium systems the level of dissipation of which exceeds a finite,
nonzero threshold valuégij) at least two independent chemical processes must take giiacehemistry must
be destabilizing, which requires that at least one of these processes must be autoqaialpétern formation
is possible even outside of the spinodal region, i.e., without involving a phase separation phenomenon, in
unsymmetrical mixtures where the potential energies between pairs of identical particles are sufficiently dif-
ferent. This latter condition replaces for nonideal chemically reacting binary mixturesndgual diffusion
coefficients conditiorwhich governs the appearance of Turing patterns in the classical reaction-diffusion
theory.[S1063-651X97)13708-4

PACS numbegps): 68.45.Da

I. INTRODUCTION some chemical reactions with spin-exchange proceses
This basically mean field type of approach was pioneered by
The phase ordering dynamics of a binary mixture, such aslubermar 2], who predicted that the influence of chemistry
a binary alloy, quenched from a high-temperature, homogeen spinodal decomposition may not only narrow the band of
neous state to a point below the spinodal line is well knowrunstable modes, but more importantly, introduce a lower cut-
[1]. In this domain, the mixture is unstable with respect tooff k,, below which all modes, and in particular, the mode
long wavelength, small amplitude concentration fluctuationsk=0, are stable. Considering a two step autocatalytic reac-
and, at first, decomposes into two coexisting phases exhibition, this author further showed, within the framework of this
ing an interconnected, labyrinthine morphology. Subsegytocatalytic model, that chemistry restricts the size of inho-
quently, on a long time scale, this pattern slowly coarsengnogeneities which arise during spinodal decomposition un-
and finally transforms into two homogeneous macroscopigjer conditions where the system is out of equilibrium with
phases separated by a minimal interfacial boundary regionggpect to both chemical equilibrium and phase composition.
This coarsening, also called Ostwald ripening, is due to the e yheoretical results reported in more recent works sup-
fact that in the spinodal domain, all nonzero Fourier mOde?)ort this prediction that chemistry may suppress the coarsen-

\liwthra Wr?vtet::umva?ilr s:[ralierrthr?]n;org? uprﬁerrsu:o;‘;v;'?\lue ing which normally terminates the isothermal phase separa-
y are unstable, € the zero moxe © 1S only marginally ti(l)n of immiscible, incompressible fluids. More than that

stable. Under those conditions, the dynamics selects a spatial

organization which originates from the amplification of Iargeexen n tlhese StUd'eS’ht.h'ﬁ suppresgl;)n |st,)|obt§|neld t:]hankfhto
wavelength modes, i.e., it corresponds to vanishingly smafteémical processes which are considerably simpler than the

wave numbersK—0). Indeed, though the growth of these one consider(_ad by *.".‘be“"f‘a”.’ her}ce, suggesting that the
large scale modes is extremely slow because it requires tH€nomenon in questida ubiquitous in natur¢5], and that
diffusion of matter over large distances, in the end, it gov-the class of chemical reactions, which qualify as candidates
erns the spatial organization because it minimizes free erfor @ pOSSIl?le gxpgr!meptal_ der'nonstratlon., is extremely
ergy. broad. A major simplification in this respect, is the fact that
Over the last twenty years, several theoretical studied) none of the models studied recently, is the chemistry in-
have investigated the idea that coupling spinodal decompoolved autocatalytic: typically, the reactions considered are
sition with chemical reactions may, in the absence of hydrosimple isomerization processes, such As=B, [3,4,8,
dynamic effects, freeze this coarsening process and stabilizssociation-dissociation reactions, suchAasB=C [5], or
a stationary inhomogeneous state characterized by an intristandard adsorption-desorption surface reactiéhs
sic wavelength; i.e., a wavelength determined by molecular This apparently extremely general effect of chemistry on
and kinetic parameters rather than by externally imposedpinodal decomposition is, however, obtained through a pro-
boundary conditions and/or geometrical constrajats6,§|. cedure which we find thermodynamically unsatisfactory
In general, the starting point of these theoretical studies i§10], because it consists in adopting chemical rate laws
a nonlinear diffusion equation, deriving from a square-which, contrary to those adopted for diffusion, do not take
gradient free energy functiongd], in which source terms are into account the nonideality of the systems considered. More
added to model the chemical reactions occurring in the mixprecisely, it amounts to assuming that, somehow, far from
ture. So far, the choice of these chemical terms has reliethermodynamic equilibrium, the relationship binding chemi-
either on intuitive considerationi®,4—6,9, or on a master cal affinities to activity coefficientgl1,12 may be neglected
equation derivation which exploits the kinetic similarities of and that, as a result, it then becomes possible to model
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chemical and diffusional processes as being independetibn at an intermediary stage. This analysis allows us to pre-
from each othef13]. dict also that the difference in potential energies between
The conditions for which thigar from equilibrium inde-  pairs of identical particles plays an essential role in the sta-
pendency assumptiofffFEIA) applies are unclear. Our ob- bility properties of the systems considered here. Notably, the
jective here is, therefore, to investigate the behavior of mixvalue of this parameter determines whether or not there can
tures undergoing phase separation in the presence @iready exist a finite band of unstable modes outside of the
chemical reactions along a different line of approach whichSPinodal domain; in other words, whether or not a symmetry
(i) does not rely on the FFEIA(ji) allows us to encompass Preaking instability may be observed which leads to pattern
equilibrium, as well as far from equilibrium situations, and formation without involving the unmixing phase transition.

(iii) is based on thermodynamic considerations which ard N€ results are illustrated on an example in Sec. IV C.
model independent.

We shall study the case of chemically reactive binary!l. MODELING OF CHEMICALLY REACTIVE BINARY
mixtures which is also the case investigated in previous MIXTURES
works. We shall limit ourselves to situations which involve
no hydrodynamic effects. From a chemical point of view, i i ) . i
this means that we restrict ourselves to reaction schemes We consider a binary mixture subjected to isothermal,
which a priori rule out the occurrence of pressure or densitylSobaric conditions which beloabove some critical tem-
variations of chemical origin. No other assumption will be PeratureT., exhibits a miscibility gap. As usual, we suppose
made concerning the kinetics of the chemical processes coffiat the coarse grained concentrations of the components 1
sidered. and 2 forming this mixture, respectivelg,(r) and c,(r)

It is characteristic of chemical reactions and diffusion that(éXpressed in mass per unit volumean be defined at each
the thermodynamic forces governing these processes are rf@ace point. In functional form, the Gibbs free energy of
lated, being function, in the first case, of the chemical potenthis system can be written as
tials and, in the second case, of the chemical potentials spa-
tial derivatives. The thermodynamic fluxes conjugate to G:j drg(r), (1)
these forces, i.e., the chemical reaction rates and diffusion
rates, are thus also function of the chemical potentials; this . .
relationship is, furthermore, well known if one admits thewhereg(r) Is a free energy densitylr denotes a volume

validity of the usual phenomenological laws relating thermo_elemgnt,.and mtggratlon extends over the entire system.
dynamic forces and fluxes. Under those conditions, choosinévorklng in the spirit of the treatments currently ado_p_ted to
the chemical potentials determines the coupling between di _Fudy the problem at hand, we assume that composition gra-
fusional and chemical processes. In particular, it determineg!ents are small compared to the re_(:lprocal Obf intermolecular
the equilibrium state towards which reaction-diffusion sys- Istances and we expanﬂ.r-) about its .valueg for a bulk
tems evolve in the absence of external constraints. As e ohase gf uniform composition. Assymmg'further that no ex-
bodied in the classical Duhem-Jouget theofén, it results ernal field or other source of spatial anisotropy is present,

therefrom that in equilibrium systems, diffusional stability ;/;/]e (inly retf;"f‘ n t.h's expan5|on.tr:1e terms compatible with
automatically insures the stability of chemical equilibrium. e tensoral invariance aj(r) with respect to symmetry

In order to determine what happens to this classical stabilit)s’per"’ltlons of rotatiof9]. To the leading order, this yields

A. Free energy and chemical potentials

relationship under nonequilibrium conditions, question 1.2
which underlies the present study, it is essential in modeling N=aP(c. )+ = (Cr CVC Ve, 2
chemical and diffusional fluxes to respect this property that 9(r=g7(c1.C2) 2'21 xij(C1.C) Ve Ve (2

both kinds of fluxes are given functions of the same chemical
potentials, which themselves are thermodynamic quantitie$he scalar terng® takes into account the nonideal, energetic
subjected to well-defined, general requirements. and/or entropic destabilizing effects responsible for the spin-
We undertake the investigation of the behavior of binaryodal decomposition of uniform bulk phases. Thg's de-
mixtures undergoing simultaneously spinodal decompositiorscribe the interactions betweéy) pairs of particles and are
and chemical reactions by addressing this problem in detathe elements of a symmetric matrix when the medium is
in Sec. Il. Taking as usual in mean field approaches, thésotropic. Contrary t@®, these gradient terms should always
square-gradient free energy as starting point, we discuss thee stabilizing: in the spinodal domain, their effect should
form that chemical potentials must have within this frame-insure the minimization of interfacial boundary regions and
work to be thermodynamically consistent. Subsequently, wéhe existence of an upper cutddf, on the band of unstable
express in terms of these chemical potentials the generalizéeburier modes.
reaction-diffusion equation governing the spatiotemporal be- As explained in the introduction, it is important in order
havior of the system. We analyze the linear stability properto study the coupling of chemical reactions and spinodal de-
ties of the uniform steady state solutions of this equation ircomposition, to take into account that these two processes
Sec. lll. We derive from this analysis in Secs. IV A and are controlled by thermodynamic forces which are linked to
IV B, the thermodynamic and kinetic conditions under whichthe components chemical potentialg and w,. The remain-
chemical reactions may introduce a lower cutgfivhich (i)  ing part of this section serves the purpose of setting up the
excludes the zeroth mode from the band of unstable modegeaction-diffusion equation obeyed by the system dynamics
(i) permits to avoid the phenomenon of coarse graining, anéh agreement with this requirement and in as general form
(ii ) allows instead for the freezing of spinodal decomposi-form as possible.



56 CHEMICAL FREEZING OF PHASE SEPARATION IN ... 3129

Let us first explicate that in Eq2), g(r) is a first order it is essential to remember that andc, must be treated as
homogeneous function of the concentratianys For any independent quantities. Replacing express®rfor g in Eq.

numbera, one has (1) and using Eqs(6) and(7), we obtain that
g°(acy,acy)=ag’(cy,co), (33 1= p3(¥) = 3[K(¥) +A(X) ]V

Kij(acl,a02)=a_1kij(C1,C2). (3b) — 39X k(X)+A(X)](Vx)?, (8)

Choosinga to be equal to the density=c,+c,, we reex- MZ:MQ(XH [ k(x)—A(X)]Vx

press the functional dependenceg8fand of thex;; in terms

only of the coarse grained massic fractiosx;(r)=c,/p, + 3 (1=%) k(X)—AX)](VX)?, 9

so that the free energy densit{2) thus rewrites as

[¥,(r)=1—x] where 12 and x5 are the bulk chemical potentials of the

components, andA (x)=«41(X) — k»x(X) measures devia-
134 xi(X) tions from ideality which arise when the attractive forces
9(=pg°(x)+ = >, ——V¢;-Vg;. (4)  pulling together identical molecules are different; clearly,
2ij=1 P this contribution to nonideality is distinct from the one de-
, . _ scribed byx(x). Depending upon whethekx(x) is equal to
Assuming that the densiy=c; +c; is constant throughout ;¢4 or not, we shall call the mixture symmetrical or unsym-
the system, immediately transforms this expression into the,atrical. The deviations ok (x) from zero may be due to a

familiar Cahn-Hilliard form difference in the range over which the interactions between

pairs of identical particles operate as well as to a difference
g(r)=p| g°(x) + @(Vx)z ’ (5) in the intensities of the attractive forces. In this sense, the

notion of symmetry used here is more general than the one
associated with symmetrical mixtures classicll]. In de-

where «(X) = k11(X) + k25(X) —2k15(X) measures that con- riving Egs.(8) and(9) we have used the classical relation

tribution to nonideality which arises from the existence of an b b

unbalance between the mean attractive forces between like Ip(X) dpa(X)

molecules and the attractive force between unlike molecules. XX +(1=x) ax

This parameter must be positive so that sethe occurrence

of inhomogeneities results in an increased free energy. Suwhich the bulk chemical potentialskl’(x), and ,ug(x) must

face tension effects then insure that concentration gradientatisfy in view of the extensivity properties &. Equation

cannot growad infinitumand that the spinodal instability is (10) is of particular interest for the following because it al-

bounded by an upper cutoff; as a consequence, inhomogenews us to specify the bulk chemical potentia$ and 5 in

ities corresponding to large wave numbemnall wave- terms of a single unknown functiaf(x). One has

lengths are always damped.

Given thatp=c;+c, is constant, it could seem, at first X , ,

sight, that intrpoducing this factor in E¢4) complicates no- p2(x)=ud+ L dx’(1=x") Z(x"), 11

tations unnecessarily. This is the case when spinodal decom-

position takes place in the absence of chemical reactions: to X

write down the diffusion equation describing the system evo- p3(X) = pu3— J' dx'x"Z(x"), (12

lution, it is then sufficient to know the chemical potential 0

difference

0, (10)

where the chemical potentia}s‘l) and Mg of components 1
and 2 in pure form are functions of temperature and pressure
only. The integrations extend from the situation in which the
components are pure to the one in which they form a uniform
mixture the composition of which is given by
so that the factop=c,+c, may be forgotten. Here how- ¢, =px,c,=p(1—x). In terms of the chemical potentials
ever, we need to keep track of the complete dependence @) (9), the free energy density writes gér)=cyu;+ Cous.

G with respect tac; andc,. Indeed, later on, to incorporate |ntegrating the Laplacian terms of this expression over a vol-
chemical reactions and write down the reaction-diffusionume of mixture enclosed by a surface on which boundary

equation giving the system evolution, we shall need to knowerms vanish[9], we recover the Cahn-Hilliard fornt5)
the chemical potentials of each component separately. In dgvhereg, is given by
riving the latter from the classical defining relations

6G(x,1—X)
Ap=p—pe=—5

g°00) = p[xub () + (1=X) u5(x)]. (13
6G(cq,Cy)
M1=#, (6)  Noteworthy, while the chemical potentiai8),(9) depend on
! the self-interactions differena®(x), the usual Cahn-Hilliard
5G free energy(5) does not. As a result, classicaly(x) plays
MZZM, (7) no role in the spinodal decomposition problem of purely dif-

oC;y fusive binary mixtures. We shall see below that this situation
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changes in the presence of chemistry. Chemical rates are, in C. Diffusive flux and spinodal instability

general, more complicated functions of chemical potentials hg rate of diffusion is proportional to the divergence of
than diffusion and as a rule they depend upox) explic- g fiyx 3. of particles 1 with respect to particles 2. The
itly. The latter quantity becomes then an essential paramet§fermodynamic forc&, driving this process is the gradient
for the stability properties of the mixture. of the chemical potential difference between molecules 1 and

2 (F=—=V[u1—u3]). To related, andF, we adopt the usual
B. Examples: Perfect and regular solutions phenomenological law

With the derivation of expression{§) and(8) and(9) the 3= — LX)V (s — 16
relations existing between the square-gradient free energy X (IV(p1~p2), (16)
density of a binary mixture and t_he chemical potenti_als of itSyhereL(x) is a function of compositiorfOnsager’s coeffi-
components have been stated in general form. This formabiem)' the positivity of which is required in order that en-

ism involves essentially three unknown functior&X),  tropy production be positive. In the absence of chemistry, the
x(x) andA(x), which have to be determined on the basis ofgiffusion equation foix thus reads

the properties particular to the system considered.

The first two functions govern the behavior of purely dif- IX=V[L(X)V(u1— )] (17)
fusive systems. For the sake of concreteness, before we pur-
sue our general treatment, let us specify these functions fofhe stability of a homogeneous statex, is easily deter-
two classical types of mixtures: perfect and regular solutionsmined by considering the evolution of a small perturbation
Our purpose here is purely illustrative. The results estabdX(r,t)=Xx(r,t) —xo, that moves the system away from this
lished in the next sections will not be restricted to the choicestate
of a particular mathematical form fat(x) and «(x).

For simplicity and without loss of generality, we set
p=1 in the following. We first consider the case of two
components forming a perfect solutions in a uniform bulk
phase. This corresponds to the choice

Gox(r,1)=LoV2[ Spa(r,t) = Sua(r,H)]. (18

Here, L, stands forL(xy). We also introduce the simplified
notations ko= x(Xg), Zo=2(Xy) and Ag=A(Xg). The ex-
pressions forsu, and u, are calculated from relatior(8)
k(x)=0, and (9) after substituting in them expressiofikl) and (12)
for the bulk chemical potentials. This yields

Z(X): RT K0+A0 2
X(l_X) ' 6Ml(r1t): (1_XO)ZO_ 2 v é\X(ryt)r (19)
Replacing these expressions and Ed4)—(13) in Eq. (5), it ko—Ag
immediately follows thatg=g(r) is constant in space and Spo(r,t)=| —XoZo+ 5 V2| 8x(r,t). (20

represents the free energy density of a perfect solution,
0 Equation(18) may now be written in Fourier space as
g=g"+RT[x In(x) +(1—x)In(1—x)]. (14
o 0 _ _ _ 3 0% (K,t) = Lok 1 (Xg,K) — mh(Xg,K)18x(K,1), (21)
9%=uix+ u3(1—x) is the free energy density before mix-
ing; the second term is the entropy of mixing which is of where,x; and 5 are obtained from Eq$19) and (20):
ideal form.

As a second example, we consider a symmetrical nonuni- w1 (Xo,K)=(1—Xq)Zo+ 3 [ ko+Ag]K?, (22
form regular solution with a constant, stabilizing surface ten-
sion term. This amounts to putting (X0, K) = —XoZo— & [ ko—Aglk? (23
k(X)=k>0 (xk=cons}, Replacing Egs(22) and (23) in Eq. (21), yields that the
linear growth coefficient of modk is given by
RT
Z(x)= m—m, I'(k)=—Lok?[Zo+ kok?]. (24)
, Since ko must be positive, the sign d,=d%g(x)/dx? at
and yields X=X, determines the nature of the free energy extremum;
0 the homogeneous states is stable for posiye If Z, is
9(r)=g"+RT[xIn(x) + (1= x)In(1—-x) ]+ Qx(1-Xx) negative, the homogeneous staeis unstable with respect
to perturbations the wave numbdrsf which lie in the range
+ 2 (Vx)? (15)
2 0<k<+—Zy/ko=Kk,. (25)

where () measures the bulk nonideality; whébh>0, this In that case, the system leaves the homogeneous state and
system exhibits a critical point forx=x.=1/2 and tends to develop two domains of different concentration
T=T,=Q/2R[11,14. separated by an interface. The conditiby=0 thus defines
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the so-called spinodal domain. The growth factor of the fast- R
est growing mode during the early evolution of spinodal de- O X= E W, +V-[L(X)V(1— )] (31
composition, i.e., r=1
N Two qualitatively different kinds of transformations are en-
k1=~ Zof2K0, (26) compassed by Ed28) according to whether or not the res-
is then given simply by ervoirs in contact with the mixture are involved. In the latter
case, one hag;,=b;,=0 (Vi) so that only the components
ZS 1 and 2 of the mixture participate in the reaction. In the
F(kf)=Lo4—Ko- (27)  former case, at least some of thg andb;, coefficients are

different from zero and the reaction is a reservoir “driven”
_ - _ _ reaction or exchange process. In driven reactions some of the
D. Coupling of diffusion and chemical reactions Bi’s may act as catalysts, e.g., whap=Db;, .

Suppose now that in addition to diffusion, the composi- TO each reaction rate, is associated a thermodynamic
tion of the binary mixture may also vary due to chemicalforce, or chemical affinity4, . With the notations
reactions and/or relaxation phenomeépacitation processes,

conformational changes, photochemical processes). etc. e =a1Mipg+a5Mopot wg, (32
Suppose further that there aRelinearly independent pro- _ _
cesses of this sort, and that the mixture is an open system in Mme=by My +bo Moo+ ug,, (33

contact with external reservoirs of constant composition . .
which may maintain it out of thermodynamic equilibrium. where,urBzEairMBi,uBi andu,g=2by; Mg ug, the affinity
The molecular mechanisms underlying these processeg, can be expressed in terms of chemical potentials as
need not be detailed. It suffices for our general purpose to
know that they amount to transformations which interconvert A= — (34)
the mixture components into each other. Phenomenologi-
qally, these processes can be represented in chemical reggpile the reaction rateWFl;r(ﬁr)—l;r(,lzr) are the differ-
tion form as ence of two terms corresponding, respectively, to the direct
rate of reactionJr, which depends upomlr, and to the
aer1+a2rX2+Z ai,Biiber1+b2rX2+Z biBi, reverse rate of reactiom, which depends upop, .
(28) By definition, thermodynamic equilibrium is the state for
which the affinity and rate of each chemical reaction simul-
where the index=1, . . . R labels the chemical transforma- taneously vanish
tions, theB;’s represent the composition variables describing
the state of the external reservoirs and the coefficients A=0, w=0. (39
ajr ,bjr, (j=1,2j) represent the molecularities of compo- - .~ .
nents 1, 2 and; , respectively, in the forward and backward W& conclude therefrom that, when = u, = u, , the equality
direction of chemical reaction. vr(ur)=vi(p) must hold. Since, this equality has to be
As the external reservoirs composition and the mixtureobeyed independently from the value jof , the functions

density are constant, the mass balance equation giving th}zr(,) and v,(-) must be identical so that we may set

spatiotemporal evolution of the system reads 5.(:)=0,(-)=v,(-). The most general expression for the

R rate of a chemical reaction is thus

= MW, + V- [L(X)V(uq— . (29 . -
pax 21 vuMawW, + V- [L(X) V(= p2)],  (29) Wi )=, .

wherew, is the rate of reactiom. (We are primarily inter- It is well-known that thermodynamics does not determine
ested in the influence of chemical reactions on unmixingchemical reaction rates; it only imposes that at equilibrium
under isobaric conditions; we want to avoid the additionakne relationg35) hold. The fact that the functions, ando,
complications which pressure and density variations, leadingaye to be equal, is not in contradiction with this statement.
to the need of introducing hydrodynamic equation into thejngeed, the reaction rate itsedf, is not prescribed since it
description, would entajl.Since mass is conserved in chemi- || contains the unknown function, . Our analysis does

cal reactions, the stoichiometric coefficientg,=by,—ax,  not require that a particular form for this functian be

and molecular masses), of components 1 and X€1,2)  postulated. In addition, by the thermodynamic postulate that

are linked by the relation the entropy production of linearly independent chemical pro-
9 cesses must be positivej, and A, must always have the
Z 1M =0 (Vr) (30) same sjgn. This implies }hat, must be a monotonically
&y KTk ' increasing(nonlineay function.

When the affinity is small, Eq:36) reduces to the linear
It is therefore convenient for the following to define relationw,=vy.A,, wherey is a positive constant. For the
v, =v,M;=—v,,M,, and puttingp=1, to rewrite Eq(29) general nonlinear regime, it is usual to write the reaction rate
more simply as as
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W, =v,(2,)(1—exg — A IRT]) (37) Loko| ™
r = UMy r ) T:ljit, 'F: 3,01 r 43)
which is compatible with36) if v,(u)cexpw/RT). U1
At this stage, it is important to stress that a wide variety of . .
reaction-diffusion systems can be described by Ey).  Ccan be written in compact form as
Nevertheless, in Sec. I, we shall see that the stability prop- -
erties of their uniform stationary states can be classified quite (k)= —k*+[Mg(8) — zo]k?*+ NgZo. (44)
simply into four general categories once the chemical poten-
tials are known and the thermodynamic requirements menfhe explicit expressions fdviy(6) andNg are
tioned above concerning the rates are taken into account.
M (8) = Cy1(X0) 6+ Ca(Xo), (45
lll. LINEAR STABILITY OF HOMOGENEOUS
STATIONARY STATES No=C1(Xg)(1—2Xq) + Cax(Xo), (46)
A. Linear growth coefficients T (k) with
Contrary to what happens with purely diffusive systems
(cf. Sec. 11 Q, in the case of chemically reacting mixtures,
the homogeneous stationary state concentratignsan no ~ C1(Xo)= E [alrM +ayMa+ (b M1+byM3)p,],
longer be chosen at will. For a given temperature and pres- 47)
sure, their value is fixed by the chemical reactions and the
state of the external reservoirs with which the system ex-
changes matter and energy, i.e., by the solution®f the _ _
Consgrvation relation 9y y ) Ca(Xo) = 2 [aler axMy—(byM1—byM3)p,].
(48)

R

> vlv (i (%) — vy (i (X)) ]=0. (39

The p;’s and 7;’s are positive functions whatever the value
of Xoe[0,1]. Furthermore, it should be kept in mind that the

Using the same notations as in Sec. Il C, the linear stabilitwalue ofx,, as given by Eq(38), does not depend on the

of these states with respect to a small perturbafiofr,t) is
given by

R
aﬁx(r,t):{; v (80, ( ) — v, ()

coefficientsk;; multiplying the gradient terms af, and thus
does not depend o0é. This is noteworthy becausglargely
controls the system stability. Indeed, one may already ob-

serve that in the expression fﬁ(k) [cf. Eq. (44)], 6 only
appears in the term of ordé®; by varying &, the sign and
magnitude of this term, and hence the stabilityxgf can be

2 modified at will.
+LoVA(ou1— ) |- (39
B. Classification of instabilities
The quantitiessv, (1) and év.(u,) given by For nonreactive systems, it has been shown in Sec. Il C
q that the change of sign afy, or equivalently here of,,
- _ dur - _ e defines the boundary of the spinodal domaig=<0 is the
O ) dee|- o - Our(1, D) =v ¢ ope(r0), condition under which Eq(24) admits a finite band of un-
w00 =11 (x0) (40) stable modes which includes the mdde 0. Here, in order
to classify the wider class of behaviors which become pos-
do sible in the presence of chemistry, we remark the following.
()= —= S (1) =0 ! Spe(r 1), (i) Since the linear stability of the homogeneous station-
du, (0 = i (X0) ary state solutions of E¢(38) with respect to the mode
B a1y k=0 is given by
definev | andv | . Introducing the dimensionless parameters I'(0)=Nozo, (49)
Lo 12 v/ and hence, only depends on the sign of the functdnsnd
Z0= D! Zo, Pr:y’ Z,, the stability diagrams reporting the behaviorlgk) can
071 ' be divided into the four basic cases described in Sec.
1/2 B 1-4.
7r=< Ko ) o s= ﬂ (42) (i) In the large wave numbers domaik-{ =), the eigen-
-, ro 1 ~
Lovy Ko valuesI' (k) are always negative: surface tension, which pre-

vents too sharp interfaces to develop, and diffusion, which is

and proceeding as in Sec. Il C, the linear growth coefficieng| the more important that the wavelength of spatial hetero-
F(k) corresponding to the rescaled time and space variablegeneities is small, cooperate to damp short wavelength fluc-
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tuations efficiently. As a consequence, if &=0, 1. Turing kind of instability
dI'(0)/dk?=Mq(8) —z, is positive,I (k) must pass through If z;>0 andNy<0, the uniform stationary state, lies
a maximum for above the spinodal line add(0)<0. The components of the

mixture are thus miscible. Nevertheless, pattern formation
could take place if the value af fulfills condition (55). No
phase separation being involved, the symmetry breaking in-
stability appearing in that case is reminiscent of Theing

(ii ) Replacing this expression & in Eq. (44), one finds  instability well known in classical reaction-diffusion theory.
that there exists a finite band of unstable modes, from whicihe originality of the instability mechanism found here,

_ 1/2
m) _ (50

k:T(’f:( 2

the modek=0 is excluded, if the inequalities however, is that it does not require the diffusion coefficients
of two reactants, the so-called “activator” and “inhibitor,”
T'(0)= Ny 2o<O0, (51  tobe unequal. Instead, it is the difference of self-interactions
between identical particles which controls the formation of
and patterns with an intrinsic wavelength. If conditi@bb) is not
M(8 2 satisfied, i.e., if6(xp) e (6-,64), I'(k)<O for all values of
'l:(TZf):{ of 2) 20 +Nozo>0 k and the stationary state, is stable.
2. Spinodal instability
— 1000288 o [ x0) ~ 20156 i | |
2 Zo<0 andNy<0, the stationary state, lies below the
spinodal line. There exists a band of unstable modes which
+ [ Cy(X0) — 20]?+Ngzo>0 (52)  includes the uniform perturbation mode=0. We conclude
that spinodal decomposition should proceed in this case es-
are fulfilled. sentially as in the absence of chemistry. The fastest growing

(iv) In strongly unsymmetrical mixtures, i.e., in the limit mode is either Eq(50) or the modek=0, depending upon
| 8| —c, inequality (52) is always satisfied. Looking for the whetherMy(8) —z,>0 or not. When the system is strongly

transition point wherd' (k) passes from the negative to the unsymmetrical, the early growth df; is faster than that of

positive values, so that the finite band of unstable modethe fastest mode of the purely diffusive case. Indeed, under

appears, we consider E(52) as an equation id and solve  the transformatior(42) and (43) expressiong26) and (27)

for its roots. This yields the values become in dimensionless formk;=+—2z(x)/2 and
I"(k¢) = z(xo) /4. By comparing with Eq(50) and(52), it is

+=;[—C2(xo)+zoi2 [“Nozo], (53) clear that for| 5(xo)|—, the inequalityf(Ff)—F(kf)>0
= Ci(Xo) holds.

which replaced in Eq50) permit to calculate the wave num-
ber k. corresponding to this point of marginal stability. One
has If zo>0 andNy>0, the stationary state, lies above the
spinodal line. Nevertheless, there exists a band of unstable
ko= (—2zoNg) V4. (549  modes which includes the uniform perturbation méde0.
This instability originates from nonlinearities associated with
In brief, the main outcome of the above analysis, is that if thehe reaction scheme considered rather than from the nonide-
mode k=0 is stable[cf. inequality (51)], and if the self-  ality of molecular interactions in the mixture. It should in
interaction difference parametet does not belong to the general involve a multistationary state phenomenon and is in
interval (6-,d4), this respect distinct from spinodal decomposition or from the
Turing kind of instability described in case 1. As in the pre-
63(6-,64), (55 ceding case, depending upon whetheg(5) —zo>0 or not,
the fastest growing mode is either E(RO) or the mode
k=0; again also in strongly asymmetric mixturds, grows
more rapidly than the fastest mode of the purely diffusive

3. Chemical instability

then the uniform stationary staig is unstable with respect
to a finite band of wave numbers,

O<k_=sk=sk,, (56) system.
the boundaries of which can be written in terms of the values 4. Ostwald ripening freezing instability
of ki andke, given by Eqs(50) and(54), as(it is easy to If z,<0 andNy>0, the stationary state, lies below the

verify that when Eq(55) holds, the value ok; is always spinodal line, but if8(x) e (5_,5,), one hasi:(k)<0 for

larger than that ok] all values ofk: the chemical reactions completely inhibit the
_ — phase separation. If on the contradfxy) = (6_,6.), there
k.= kf\/li Vi-(ke/Kp)* (57)  exists a finite band of unstable modes,

Let us now analyze more in detail the four cases which may _
be encountered depending on the sigrzgand No. o<k, =k_<k<k,=Xk,, (58
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which excludes the mode=0. This is the interesting case Duhem-Jouget theorem, the stability properties of homoge-
where patterns with an intrinsic wave length may appeaneous equilibrium state are thus entirely determined by the
while at the same time the mixture is immiscible. As ex-sign of z, which controls diffusional stability.

plained in the introduction, such a behavior amounts in the The spinodal instability can then be observed at equilib-
terminology introduced by6,7] to a freezing of the Ostwald rium in the domain corresponding to the spinodal region of
ripening stage of phase separation. We shall, therefore, refeionreactive systems(x.)<0]. On the contrary, the ORFI

to it as theOstwald ripening freezing instabilitfORFIl). The  can never be observed under equilibrium conditions since
following properties are noteworthyi) It is clear from their N, is always negative in that case.

definitions that the purely diffusive upper cutof,= \/z, Furthermore, sincél(x,) is strictly negative at equilib-
[cf. Eq. (25) rewritten using Eq.(43)], and the lower and rium, the ORFI can only appear if the external baths drive
upper boundaries of the unstable modes band, respectivelgnd maintain the system at a finite distance from its chemical
k_ andk, [cf. Egs.(50), (54), and(57)], depend on different equilibrium state. To see this, let us suppose #abelongs
parameters and hence, can be varied independently frote the thermodynamic branch of steady stdtes] and lies
each other. For example, onky. depends ons and on the close to the equilibrium state:xg=Xe+ 86Xy, With
concentrationd; maintained constant in the external reser-| x,|/X,<1. The first terms in the expansion Nf are

voirs. It is thus to be expected that by changing these con-
centrations, one may vary the position of the unstable band

(k, ,k,) with respect to that of the purely diffusive system.
In fact, these two bands could even become disconnected, so

thatk,<k,<k,, if the inequality and the minimal distance from equilibrium at which the con-
dition Ny>0 may be realized, is

dN
NOZNe+ d_X05XO+ oty (62)

holds, in which case, chemistry hampers the damping by o> & (63)
diffusion of largek modes. d_N
We shall not, in the present work, attempt to determine dxg

and to classify the great variety of patterns which appears

once the homogeneous stationary stetdecomes unstable. The amplitude of the distance from equilibriuf, has thus
This requires a nonlinear analysis which we plan to repork lower bound below which the ORFI cannot be observed. It
elsewher¢ 16]. The objective of our discussion in Sec. IV is js equivalent to conclude that the ORFI is a dissipative in-

to precise more explicitly the thermodynamic and kineticstability, or that the patterns adissipative structuregl5].
properties which condition the appearance of patterns and of

the ORFI just defined. The results of this discussion are il-

lustrated by simulating numerically the behavior of an ex- B. Properties of reaction schemes

ample in Sec. IV C. In order that the ORFI be possible, the chemical scheme
must include at least two reactiondR¥2). Indeed, if
IV. THERMODYNAMIC AND KINETIC CONDITIONS ON R=1, the Stationary condition for homogeneous states is
THE CHEMICAL FREEZING OF PHASE SEPARATION equivalent to the equilibrium condition and we have shown
in the preceding section that the ORFI cannot be observed at
A. Dissipation threshold equilibrium. Furthermore, the scheme must include at least

Let us first consider what kind of instability may occur if On€ autocatalytic reaction, i.e., a reaction in which the sto-
the homogeneous state is an equilibrium state=(x.). At  ichiometric coefficients of at least one component of the
equilibrium, all the affinities vanisr[,&(xe)z,&(xe)] and mixture (X; or X,) are nonzero for both the direct and the

Ve =5 =y valentl “1 reverse transformationsa(;#0, b,;#0 or a,,#0, b,
consequentlyv, =v,;=v,, or equivalently, p;(x¢)=1. In #0). Indeed, if all the reactions in the scheme are nonauto-
that case, the parametévk,,N, reduce to catalytic, they can be rewritten as

R
Me=Ne=— 2, #/r, (60) pX+ D anBi= v Y+ byiB;, (64)
- I |

so that the eigenvalue equation simply reads where v, stands now fom,; andb,,. In that case, the pa-

rameterN(xg) reduces to

Te(k) =~ [k?= Nel[k?+2]. (62)
R
. . : 1
We have mentioned in _Sec._ IID that the are monotoni- N(Xo) = — = > 127 (Xo)[1—Xo+ p(Xo)(1+X0)],
cally growing functions; their derivatives are thus always 2i31
positive and so are the,. Equation(60) shows that the (65

parameterdM . and N, are always negative at equilibrium

independently of the functions in the reaction rateand  which is negative and the ORFI is impossible. Hence, it is
independently of the functions, and z appearing in the interesting to note that simple reaction schemes cannot give
free energy As Eq. (61) shows and in agreement with rise to the ORFI. In particular, binary systems undergoing
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simple reactions liké,+X=Y+ B, will not induce pattern
formation, even under far from thermodynamic equilibrium
conditions.

C. Example

To illustrate by an example the ORFI described in Sec
I, we consider the following two step autocatalytic reaction
scheme:

B+ 2X;+ X,—=3X,+ B, (66
Bl+ X1+X2\:\2X2+ Bz. (66b)

B, andB, are initial and final products the concentrations of

which are kept constant by external reservoirs. The mixture

free energy is defined by choosing fz(x) the regular solu-
tion form

zZ(x)= 2Q. (67)

x(l—x)_

In the reservoir, for simplicity, we suppose that the mixture
of B4,B, is ideal and define accordingly their chemical po-
tentials as

,LLBl:\I"i‘RT In(XBl), (68)

Adopting for the reaction rates the exponential fdB87), the
kinetic equation forx reads

M, t2pm1t pp Buitpe,
OX=T1| €X T RT —ex T RT
Mg, Tt po 2urt pp,
— To| €X| — RrRT —ex T RT
FLVZ (1= o), (70)
where

0 , KtA_, K 2
pm1=p1+RTIN(X)+Q(1—X) _TV X—E(VX) ,
(7D

0 2, KTA_, K 2
Moo= >+ RTIN(1—x)+ QX+ 5 Vox— E(VX) .
(72

We have seen that the affinitg:/RT=2 In(xBllez) of the
overall reaction

2B,=2B, (73

cannot be taken equal to zero, which implies bk\_altcannot
be equal to 1/2. Here, we sap, =0.87 and, for simpli-

L.'

c d

FIG. 1. Snapshots of the density profile, for examig) for
(8 t=0, (b) t=200,(c) t=450, andd) t=30 000. The domain size
is 90X 90 and the simulation is made with 12828 points. The
values of the parameters are given in the text.

and RT be equal to one, and choosing for to the reference
chemical potentials the valueg$=0.12249=0.183¥
=—0.288 one finds that Eq70) admits three homogeneous
stationary solutionso, namely:x3=1/2x5=0.024 279 and
Xo=x5=0.269 59. The stationary state=x5 is stable for all
k’s, while x=x§ is unstable for a range df values which
includes the modé&=0. The stationary state=xg, which
lies in the spinodal region, on the contrary, is unstable with
respect to the finite band of wave number
k_=~0.3453<k<k,=~0.5295 from which the modk=0 is
excluded. Taking this state as average initial condition and
integrating Eq.(70) numerically, one find¢see Fig. 1 that
instead the Ostwald ripening process which would be ob-
served in the absence of chemistry, a stable pattern with
hexagonal symmetry finally establishes itself in the course of
time.

A complete discussion of the various nonlinear behaviors
which may arise in models such &6a and (66b) will be
presented elsewhere.

V. CONCLUSION

To investigate the idea that chemical reactions may freeze
the unmixing of immiscible mixtures at an early stage of
spinodal decomposition, we have developed an approach
which is based on general thermodynamic arguments, en-
compasses equilibrium as well as nonequilibrium situations
and does not rely on the FFEIA.

city, we take the parameters depending on the intermole- Within the framework of this approach, we have estab-

cular interactions as being constantk(x)=x=1.0,
A(X)=A=-0.3, and()=2.2. Letting further the chemical
relaxation timesr;, 7, as well as the Onsager coefficidnt

lished that the linear stability properties of chemically react-
ing binary mixtures can be classified into four categories,
one of which(case 4, Sec. ljJicorresponds to the soft mode
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stabilization effect leading to phase separation freezing. Tavith the reactionA=B. This result, which suggests that hy-
encounter this case, it is indispensable that the system codrodynamics may affect the coupling between reactions and
sidered be dissipative, that it undergoes a chemical proceghase separation, is a point which deserves further investiga-
comprising at least two independent reaction steps and that &on.
least one of these steps be autocatalytic. It is a remarkable Finally, our results draw attention to the enlarged variety
fact that those properties are exactly those of the model studf symmetry breaking instabilities which may be encoun-
ied by Huberman in his twenty year old pioneering pdj2ér  tered in nonideal systems, even in domains of parameter
From a kinetic point of view, our results do not support space where the occurrence of phase transitions can be ex-
the recent claims that the chemical freezing of phase separatluded. This feature which we have reported earlier in the
tion is an ubiquitous phenomen@B] susceptible to be ob- case of anisotropic ternary mixturgks] is further illustrated
served with very simple chemistry. The monomolecular sysby the chemically reacting binary systems considered here,
tems, involving a single reaction step of the forks=B, notably by their behavior in response to variations of the
which have been introduced recently to study the ORFI musself-interaction parametef.
be considered as “toy” models. They have, however, the
advantage of simplicity and of furnishing an appropriate de- ACKNOWLEDGMENTS
scription of a certain experimentally realizable situati@h
As such, they could be viewed as a convenient ansatz for D.C. acknowledges the financial support of the Fonds Na-
approximating the more complex chemical interactions andional de la Recherche ScientifiqgyE. N. R. S., Belgium
reaction schemes which need to be considered in reality. It iThis work is part of a Research Program of the Center for
also worth mentioning that the recent molecular dynamidNonlinear Studies and Complex Systems of the University of
studies which have been devoted to the OREF], and BrusselgU. L. B.). The simulations have been performed on
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show any chemical freezing of the spinodal decompositiorBrussels.
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